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ABSTRACT11

Social insect colonies distribute their workforce with amazing flexibility across a large array of diverse12

tasks under fluctuating external conditions and internal demands. Deciphering the individual rules13

of task selection and task performance is at the heart of understanding how colonies can achieve this14

collective feature. Models play an important role in this endeavor, as they allow us to investigate15

how the rules of individual behavior give rise to emergent patterns at the colony level. Modulation16

of individual behavior occurs at many different timescales and to successfully use a model we need17

to ensure that it applies on the timescale under observation. Here, we focus on short timescales18

and ask the question whether the most commonly used class of models (response threshold mod-19

els) adequately describes behavioral modulation on this timescale. We study the fanning behavior20

of bumblebees on temperature-controlled brood dummies and investigate the effect of (i) stimu-21

lus intensity, (ii) repeated task performance and (iii) task performance feedback. We analyze the22

timing patterns (rates of task engagement and task disengagement) using survival analysis. Our23

results show that stimulus intensity does not significantly influence individual task investment at24

these comparably short timescales. In contrast, repeated task performance and task performance25

feedback affect individual task investment. We propose an explicitly time-resolved individual-based26

model and simulate this model to study how patterns of individual task engagement influence task27

involvement at the group level, finding support for the hypothesis that regulation mechanisms at28

different timescales can improve performance at the group level in dynamic environments.29

30

Key words: task allocation, temporal influence, timing of behavior, task feedback, behavioral31

flexibility.32

SIGNIFICANCE STATEMENT33

Social insect colonies distribute their workforce flexibly across a wide range of tasks. In the absence34

of a central command structure it is crucial for our understanding of collective task allocation that35

we decipher the rules according to which individuals regulate their task engagement. Here, we36

explore bumblebee thermoregulation. Using temperature-controlled brood dummies we analyze how37

temperature, repeated task performance and performance feedback modulate the timing of individual38

fanning behavior. We show behavioral modulation in response to task performance. Contrary39
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to common expectation, our results show that in some cases the ability to experience success in40

performing a task (here cooling the brood when fanning) can result in decreased individual task41

engagement. Based on our analysis we construct and simulate a detailed model for individual task42

response to show how this individual-level behaviour can impact on group-level performance.43
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INTRODUCTION44

Social insect colonies provide a dazzling example of flexible, decentralized collective organization.45

They cooperatively manage a complex network of simultaneous tasks ranging from scouting and for-46

aging to colony defense, nest building and brood care. One of the key features of colony organization47

is division of labor, whereby each member of the colony specializes (permanently or temporarily) in48

a subset of the tasks required for colony functioning. (Wilson 1971; Oster and Wilson 1978; Wilson49

1985; Page Jr and Mitchell 1990; Beshers and Fewell 2001; Schwander et al. 2005). Colonies demon-50

strate amazing flexibility in adjusting to changes in external conditions and in internal colony needs51

(Oster and Wilson 1978; Robinson 1992; Gordon 1996; Duarte et al. 2011). This ability to maintain52

a flexible but highly robust organization in complex and diverse circumstances is often cited as a53

key factor for the remarkable ecological success of social insects (Oster and Wilson 1978; Hölldobler54

and Wilson 1990; Grimaldi and Engel 2005; Hölldobler and Wilson 2009).55

Despite a significant amount of research into division of labor and task allocation (Bakker and56

Traniello 2016), our understanding of the underlying proximate mechanisms is still incomplete at57

best.58

Collective flexibility is based on plasticity in individual behavior. Workers in a colony are sur-59

rounded by a wide array of task-associated stimuli and need to continuously make decisions about60

if and how to respond to these stimuli. Once an individual decides to perform a task, the time and61

energy invested into that task can vary. Individual response decisions and task performance patterns62

are modulated by numerous parameters; and modulation of individual behavior can occur at many63

different timescales (Naug 2016). For example, age polyethism (Oster and Wilson 1978), whereby64

individuals’ tendencies to perform a task or a subset of tasks shift with age, affects task perfor-65

mance over the individual lifetime. Experience and learning, e.g. when interacting with a stimulus66

or with nestmates can modulate individual behavior on timescales of days or hours (Jeanson and67

Weidenmüller 2014). Understanding the rules of individual task selection and task performance,68

and the parameters modulating these rules,is at the core of the study of collective behavior. Models69

play an important role in this endeavour, as they allow us to investigate how the rules of individual70

behavior give rise to emergent patterns at the colony level. However, many theoretical models in71

the literature have not explicitly addressed on which timescale they are applicable.72

In this paper, we focus on the timing of task performance on short timescales. Analyzing the73
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fanning behavior of thermoregulating bumblebees, we ask whether the most commonly used class74

of models adequately describes individual response dynamics on short timescales. Tasks are not75

performed continuously but individuals often engage and disengage with a task. These temporal76

patterns of task performance may play an important and often overlooked functional role in task77

allocation. We specifically address the modulatory effect of three factors on the timing of individual78

behavior: stimulus intensity, repeated task performance and task performance feedback.79

Stimulus intensity is a core ingredient in the most widely accepted models for division of labor80

in social insects (for reviews see Robinson 1992; Beshers and Fewell 2001; Duarte et al. 2011) – the81

response threshold models (Bonabeau et al. 1996; Page Jr and Mitchell 1998; Theraulaz et al. 1998).82

The general idea of response thresholds has been used in many different forms. It simply refers to83

the assumption that individuals have an internal threshold for task-related stimuli and that they84

will react to this task only if the stimulus exceeds the threshold or, in probabilistic versions, that85

the threshold of an individual regulates the probability of the individual to react (see below).86

In this paper we are only concerned with a specific form of probabilistic response threshold model87

(Bonabeau et al. 1996; Theraulaz et al. 1998; Gautrais et al. 2002), the so-called reinforced response88

threshold model. Arguably, this is one of the few that have been fully mathematically formalized89

and the most widely used one among these.90

In this model, the dependency of the response probability on the stimulus level is usually modeled91

as a sigmoid function92

pθ(s) =
s2

s2 + θ2
(1)93

where s is the stimulus intensity and θ is the internal response threshold (Bonabeau et al. 1996).94

Here θ is assumed to either be fixed (Bonabeau et al. 1996) or vary over time (Theraulaz et al. 1998).95

For the latter case, depending on whether the worker is engaged in the task or not, θ can be given96

as:97

θ(t+ 1) =


θ(t)− ξ if the task is performed at time t;

θ(t) + ϕ otherwise

(2)98

where ξ and ϕ give the speeds of learning and forgetting respectively (Theraulaz et al. 1998; Gautrais99

et al. 2002).100

Two fundamental predictions result from the core assumptions of the reinforced response thresh-101

old models as discussed above: (1) for fixed threshold, the probability to engage in a task increases102
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monotonically with stimulus intensity; (2) for threshold reinforcement, the probability to engage in103

a task gradually increases with repeated task performance. Thus frequent task performance by an104

individual results in a higher probability to perform the same task again. This positive feedback105

loop can ultimately lead to task specialization (Duarte et al. 2011; Fewell and Harrison 2016; Jeanne106

2016). While phrased in different terms, replacing the internal threshold with an internal stimu-107

lus, an early positive feedback model by Plowright and Plowright (Plowright and Plowright 1988)108

embodies the exact same idea.109

In summary, while the general idea of response thresholds arose from the need to describe inter-110

individual differences, the reinforced threshold models add an additional layer that describes intra-111

individual differences over time, ie. how the behavior of an individual changes with task engagement.112

In order to test the two predictions of the reinforced response threshold model concerning change113

in individual behavior, it is crucial that stimulus intensity and repeated task performance are de-114

coupled.115

Most experimental studies so far have typically induced gradual changes of stimulus intensity116

over time, and thus implicitly over repeated task performance (O’Donnell and Foster 2001; Wei-117

denmüller et al. 2002; Weidenmüller 2004; Westhus et al. 2013). Using this experimental approach,118

it is impossible to distinguish whether any change in response probability over time is caused by119

the variation in stimulus intensity or simply by repeated task performance for short timescales,120

since stimulus intensity and task repetition both vary with time. Here we assess individual fanning121

response behavior in bumblebee thermoregulation under tightly-controlled experimental conditions122

with constant stimulus levels to separate the effects of stimulus intensity and repeated task perfor-123

mance and to address the question whether the timing of behavior is adequately described by the124

existing response threshold model.125

Besides the two parameters addressed in the response threshold model (stimulus intensity and126

repeated task performance), other parameters may influence if and how an individual responds to127

a given task-associated stimulus on short timescales. Task performance feedback is a little studied128

but possibly significant factor here, as it offers an individual information about her own effectiveness129

in performing a task. This information may modulate future decisions concerning the task perfor-130

mance, thereby playing a decisive role in the process of task allocation and individual specialization.131

However, the extent to which collective success in social insects builds on individual specialization132

and on specialists measuring and optimizing their own task efficiency is unresolved (Gordon 2016).133
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In the second part of this study, we therefore analyze the effect of task performance feedback on the134

response and timing of behavior.135

Our experimental system offers the possibility of experimentally manipulating stimulus inten-136

sity and task performance feedback and thus makes this a well-suited system to address questions137

about individual stimulus-response behavior. Bumblebee colonies are able to maintain a stable138

core temperature of 32◦C in their nests (Heinrich 1979; Schultze-Motel 1991; Weidenmüller et al.139

2002; Goulson 2010), allowing them to raise brood and increase colony size even under unfavorable140

ambient temperature conditions. Workers perform thermoregulative behaviors either to decrease141

brood temperature by fanning their wings (thereby increasing evaporative cooling) or to increase142

brood temperature by directly incubating the brood (actively producing heat in their bodies and143

transferring it to the brood). Individual bumblebees switch in and out of the task of thermoregu-144

lation, performing fanning or incubating tasks at varying times and different locations within the145

nest. Workers in a colony differ in their thermoregulatory responses (O’Donnell and Foster 2001;146

Weidenmüller 2004; Gardner et al. 2007) and can be experimentally induced to perform thermoreg-147

ulative behavior on temperature-controlled brood dummies (Westhus et al. 2013). This allows for148

precise measurement and manipulation of a task-associated stimulus (brood temperature) and a149

fine-grained, detailed documentation of individual response behavior (fanning). Using this approach,150

Westhus et al. (2013) showed that individual fanning responses are modulated not just by absolute151

temperature, but by the rate of temperature increase, highlighting the fact that response behavior152

cannot be sufficiently described by a single response threshold. Individual fanning response is also153

modulated by experience, on longer timescales, across a period of several days (Weidenmüller 2004;154

Westhus et al. 2013; but see Duong and Dornhaus 2012). The precise timing patterns of thermoreg-155

ulative response behaviors on short timescales and how these patterns are modulated by stimulus156

intensity, experience and potentially other factors have not been addressed so far.157

Here we explore the factors that influence the response patterns of thermoregulating bumblebee158

workers on very short timescales, from minutes to about half an hour. Specifically, we investi-159

gate how stimulus intensity, repeated task performance and task performance feedback influence160

individual-level behavioral patterns. Based on our experimental results, we develop an individual-161

based stochastic model of task allocation and simulate it to explore how individual behavioral rules162

can impact task allocation and group-level performance.163
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MATERIALS AND METHODS164

Laboratory colonies165

Young bumblebee colonies (Bombus terrestris) were obtained from a commercial breeder (Biobest,166

Belgium) and maintained in wooden two-chamber nest boxes (52×40×10 cm) covered with plexiglass167

lids at 22◦C room temperature, 50% RH and under a 12h/12h L/D cycle. At this temperature,168

workers often incubate to increase brood temperature and fanning is not observed. Colonies were169

provided with sucrose solution ad libitum in the foraging chamber of the nest boxes; defrosted, fresh170

honeybee-packed pollen was given every second day directly into the nest.171

Experimental design172

Workers were tested in a circular Plexiglas test arena (diameter 7.3 cm, height 4.9 cm). The wall173

of the test arena was equipped with 12 ventilation holes (diameter 0.4 cm, 0.5 cm above ground).174

The arena floor had two indentations alongside the wall where sugar water was provided during175

experiments and a central hole through which a brood dummy protruded into the test arena (see176

Fig. 1).177

Brood dummies consisted of aluminum cones (diameter 1 cm) mimicking the size and shape178

of natural bumblebee brood (for details see Westhus et al. 2013). A thermocouple ran along the179

longitudinal axis of the dummy, ending in the tip. In this way brood dummy temperature could180

be precisely measured. Brood dummy temperature could be adjusted either via a connected water181

bath (Experimental series A) or via an internal Peltier element (Experimental series B). Dummies182

were covered with Parafilm and a thin layer of wax (canopy wax) that had been removed from183

the mother colony of the tested worker and frozen. The tip of the brood dummy was additionally184

covered with 0.05g wax that had been taken directly from the brood of the same colony in order to185

provide the necessary olfactory stimulus. The thermocouple measuring brood dummy temperature186

was connected to a recording device (NI cRIO-9074 and NI 9213, National Instruments, Germany)187

running a program (created with National Instruments LabVIEWTM 2010, Version 10.0.1, by Ste-188

fanie Neupert) that records time, temperature and the occurrence of fanning behavior (entered via189

a keyboard) at 1 Hz (Experimental series A) or at 10 Hz (Experimental series B).190

For testing, a worker bee was carefully removed from the brood area of her nest under red light191

using forceps and placed in the test arena containing the brood dummy. The test arena was closed192
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with a glass plate and the bee was left undisturbed for 10 minutes. After this acclimatization phase193

she was continuously observed and her fanning behavior was recorded. At the end of each experiment194

the bee was marked and returned to her colony. The test arena and brood dummy were cleaned.195

Fresh Parafilm and wax were used for each tested worker. Each bee was tested only once.196

Experimental series A – stimulus intensity and repeated task performance197

We analyzed the fanning behavior of bumblebee workers at different, stable brood dummy tempera-198

tures. In order to avoid temperature ramps, individual bumblebees were moved together with their199

test arena between two brood dummies of different temperatures. The base of each brood dummy200

was attached to a water-filled aluminium plate that was heated via a connected water bath. Two201

aluminum plates, each heating one brood dummy, were placed next to each other and covered with202

one insulating Styrofoam board, through which the brood dummies protruded. One water bath (and203

thereby brood dummy) was set to 32◦C, the second was set to either 42◦C or 47◦C. Both experi-204

mental temperatures (42◦C and 47◦C) were high enough to be assumed above fanning thresholds205

for most bees (Westhus et al. 2013).206

At the beginning of each experiment the test arena contained the 32◦C brood dummy, reflecting207

the optimum brood temperature (Weidenmüller et al. 2002). After a worker was placed in the test208

arena, and following the acclimatization phase, her fanning behavior was continuously recorded for209

10 minutes. The test arena containing the bee was then very carefully lifted off the brood dummy210

and immediately placed onto the second, adjacent brood dummy, which now protruded centrally211

into the test arena and had been heated to either 42◦C or 47◦C. The fanning behavior of the bee212

on this second brood dummy was recorded for another 20 minutes. 40 workers from three colonies213

(n=18/13/9) were tested: 20 for T = 42◦C and 20 for T = 47◦C.214

Experimental series B – task performance feedback215

In order to analyze if a bee’s fanning behavior is influenced by the cooling effect that she achieves216

while fanning we analyzed data from a study by Weidenmüller and Kleineidam (unpublished data).217

Here brood dummy temperature was regulated via an internal Peltier element placed in the tip of the218

brood dummy and controlled by a PID regulator. Bees were tested under one of two experimental219

conditions: (1) in the open-loop condition the heating power of the Peltier element remained constant220

during each experimental phase and workers could decrease brood dummy temperature via fanning,221
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comparable to the cooling effect they had in Experimental series A; (2) in the closed-loop condition222

the cooling effect of a fanning bee was counteracted by continuously adjusting the heating power of223

the Peltier element and the fanning bee had only very little impact on brood dummy temperature224

(no more than 0.015◦C).225

For each experiment, a bumblebee worker was placed in the test arena containing the brood226

dummy at 32◦C. After the acclimatization phase her fanning behavior was continuously recorded227

during the following experimental period. Brood dummy temperature was set to different levels, for228

7 minutes each, in the following sequence: 32◦C – 39◦C – 44◦C. 43 workers from four colonies were229

tested (n=5/4/16/18): 20 under the open-loop condition; 23 under the closed-loop condition. For230

this study, we analyzed only the fanning behavior shown at 44◦C, as this brood dummy temperature231

elicited a fanning response in the majority of tested bees and was closest to the temperatures tested232

in Experimental series A. We compared the fanning behavior under ‘effective’ (open-loop) versus233

‘ineffective’ (closed-loop) fanning conditions.234

Data analysis235

Fanning workers tended to frequently start and stop fanning over the experimental period (see Fig. 2).236

We analyzed the total fanning time and number of fanning events in Experimental series A and B237

using the Mann-Whitney U -test. We define a fanning event as a period of uninterrupted fanning.238

Besides analyzing the data in the commonly used summary form, we investigated a more finely239

grained picture of the behavioral patterns by studying the potential change of fanning events over240

time using survival analysis. This approach allows us to investigate the time sequence of stochastic241

events and specifically to estimate the event rate, accounting for incomplete information through242

censoring (Kleinbaum and Klein 2012; Liu 2012).243

Particularly, we used the Cox regression model, a popular semi-parametric technique to determine244

whether a given explanatory variable (covariate) has a systematic influence on the rate of an event245

(Cox 1972). We recently introduced the Cox model to the analysis of social insect task allocation246

in this form (Meyer et al. 2015) and it has been adopted by other studies for similar purposes247

(Leighton et al. 2017). The central advantage of the Cox model is that to analyze the influence of248

explanatory variables, it is not necessary to specify the baseline rate function, which can be complex249

and time-dependent. The only assumption that needs to be verified is the proportional hazards (PH)250

assumption, which states that the influence of explanatory variables does not change over time. To251
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verify the PH assumption we measured the correlation between the Schoenfeld residuals (Schoenfeld252

1982) and the ranked event times.253

We tested the influence of the potential explanatory variables (1) stimulus intensity T , (2) re-254

peated task performance, measured as the position j of a fanning event in the sequence of an255

individual worker’s fanning events in Experimental series A and (3) task performance feedback, cat-256

egorized by E to capture open-loop (performance feedback) and closed-loop (performance feedback257

suppressed) conditions in Experimental series B on (a) task engagement, quantified as the rate of258

starting a fanning event and (b) task disengagement, quantified as the rate of stopping a fanning259

event. For each individual worker i, we used the start time si,j and end time qi,j of the j-th fanning260

event for all j. The interval between the j-th and the j + 1-th fanning events is σi,j = si,j+1 − qi,j261

and the duration of the j-th fanning event is ωi,j = qi,j − si,j . The Cox regression was used to262

estimate the rates of task engagement and task disengagement based on the inter-fanning intervals263

Σ = ∪i,jσi,j and the fanning durations Ω = ∪i,jωi,j respectively.264

In Experimental series A, 32 of the tested 40 bumblebee workers showed fanning behavior for265

at least one second after being positioned on the second brood dummy: 14 for T = 42◦C; 18 for266

T = 47◦C. A small number of workers did not fan at all (6 for T = 42◦C; 2 for T = 47◦C). Our267

analysis is implicitly conditioned on the 32 workers who fanned for at least one second. If we were268

concerned with the overall colony response, excluding passive workers would clearly introduce a bias.269

It is important to note that this is not the case here, since our analysis is only concerned with the270

response timing patterns of workers who engage with the task. Thus we must exclude those that271

do not respond at all. Among these workers, there were 1493 fanning events in total. Similarly,272

for Experimental series B, our analysis focused on the 36 out of 43 tested bumblebee workers who273

showed at least two fanning events at T = 44◦C: 18 for the open loop; 18 for the closed loop. Here274

the total number of fanning events is 1428.275

Data availability276

The data generated and analyzed during this study in Experimental series A are available in the Open277

Science Framework repository (https://osf.io/kgsh9/). The dataset analyzed in Experimental278

series B is available from the corresponding author on reasonable request.279
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RESULTS280

Experimental series A – stimulus intensity and repeated task performance281

For the two temperatures tested in our experiment, stimulus intensity did not influence the time that282

an individual invested into fanning. Total fanning time did not significantly differ between T = 42◦C283

and T = 47◦C (Mann-Whitney U -test: P = 0.246; Fig. 3A). Likewise, the number of fanning events284

did not significantly differ between the two tested temperatures (Mann-Whitney U -test: P = 0.447;285

Fig. 3B).286

Consistent with this summary analysis, stimulus intensity T did not have a statistically significant287

influence on the rate of task engagement by the Cox regression (Wald statistic P = 0.496). The PH288

assumption applied to both T and j, as the residuals for both explanatory variables were uncorrelated289

with the ranked event times (Pearson correlation: 0.016 for T ; 0.035 for j). The explanatory variable290

j had a statistically significant positive effect on the rate of task engagement (Wald statistic P =291

4.12e−11), but its influence was small (relative risk 1.005 with confidence interval [1.004 . . . 1.007]).292

Similarly, we applied the Cox regression to test the effect of explanatory variables T and j on293

the rate of task disengagement. The PH assumption applied to both T and j (Pearson correlation294

between Schoenfeld residuals and ranked event times: -0.039 for T ; 0.081 for j). Consistent with the295

summary analysis, the results of the Cox model indicated that the rate of task disengagement was296

not significantly influenced by T (Wald statistic: P = 0.838). For j, the Wald statistic (P = 0.019)297

suggested a statistically significant negative effect, but its influence was small (relative risk 0.998298

with confidence interval [0.997 . . . 1.000]).299

In summary, we found no significant effect of stimulus intensity on the time investment and300

temporal patterns of fanning behavior. Repeated task performance resulted in slightly longer fanning301

durations and slightly shorter inter-fanning intervals.302

Experimental series B – task performance feedback303

Neither total fanning time (Mann-Whitney U -test: P = 0.275; Fig. 3C) nor the number of fanning304

events (Mann-Whitney U -test: P = 0.962; Fig. 3D) differed significantly between the open-loop and305

closed-loop conditions. Thus summary analysis showed no significant effect of stimulus intensity or306

task performance feedback on task performance. However, our results of the Cox model showed that307

there was a significant effect of task performance feedback on the rates of task engagement and task308
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disengagement.309

For task engagement, we applied the Cox regression to the inter-fanning intervals Σ with co-310

variate E. The PH assumption held for E (Pearson correlation: 0.083) and E had a statistically311

significant influence (Wald statistic: P = 0.001). The Cox model suggested that the ability to reduce312

brood dummy temperature when fanning (open-loop condition) reduced the rate of task engagement313

(relative risk 0.826 with confidence interval [0.739 . . . 0.923]).314

For task disengagement, we applied the Cox regression to the fanning durations Ω with covariate315

E. The PH assumption applied to E (Pearson correlation: 0.034) and E had a statistically significant316

influence (Wald statistic: P = 4.25e−7). In line with the result for task engagement, the ability to317

reduce brood dummy temperature when fanning increased the rate of task disengagement (relative318

risk 1.335 with confidence interval [1.194 . . . 1.493]).319

In summary, for both task engagement and task disengagement, task performance feedback, i.e.320

the ability to cool the brood dummy when fanning, influenced workers’ investment into the fanning321

task. When lacking this ability (closed-loop condition), workers tended to show higher levels of322

fanning activities.323

MODEL324

Our experimental results emphasize that the timing patterns of individual task performance need325

to be taken into account explicitly. Here we propose a time-resolved model to describe patterns of326

task performance at the individual level.327

We find that individual bumblebee workers frequently interrupt fanning (see Fig. 2), indicating328

that stimulus intensity can be repeatedly assessed before a decision to perform the task again is made.329

Fig. 4 gives a conceptual framework of task allocation in general. We assume the probability to assess330

the stimulus for a specific task i as pi. A worker selects a task i according to p1, p2, ..., pi, ..., pk and331

subsequently tests whether the task-related stimulus si exceeds her task-related threshold θi: if so,332

she engages in task i; otherwise, the task-selecting process is repeated. Once engaged, task i is333

performed for some time before a period of task disengagement of inactivity for this task begins334

(in our case: fanning durations and inter-fanning intervals). Starting the period of inactivity after335

performing task i and ending the period of inactivity are stochastic events characterized by the rate336

functions µi(t) and λi(t) respectively.337
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To verify the time-resolved model with the results of our experiments (in which a single task338

– fanning is observed), we reduced the conceptual model (illustrated in Fig. 4) to a version which339

only involves a single observed task A and a collection of other behaviors that a worker may engage340

in, represented as a task set B (see Fig. 5). We simulated this coarse-grained version of the model341

based on the Gillespie next reaction method (Gillespie 1976, 1977).342

In order to compare the results of our simulations with empirical data, we analyzed the lumped343

distributions of inter-fanning intervals Σ and fanning durations Ω at the group level. We fitted344

our empirical data to an exponential distribution obtained by the maximum likelihood estimation345

(implemented by EstimatedDistribution in Mathematica, Version 11.1, Wolfram Research Inc.)346

for both Σ and Ω. An exponential distribution would be expected if the underlying process was a347

simple homogeneous Poisson process. Such a process would be the outcome of the standard response348

threshold models implemented with regular time-steps.349

However, we found that the exponential distribution cannot be fitted well to our empirical data350

(Kullback-Leibler divergence: 1.858 for inter-fanning interval and 1.671 for fanning duration; Fig. 6).351

On the other hand, the results of our model simulation fit the empirical distributions reasonably well352

(Kullback-Leibler divergence: 0.110 for inter-fanning interval and 0.086 for fanning duration; Fig. 6).353

This shows that the simplified assumption of task engagement or disengagement as a homogeneous354

Poisson process is not consistent with our experimental data (Akaike 1974). The timing patterns355

for Task A are influenced by other behaviors (Task set B) as described in our model.356

SIMULATIONS357

We used the proposed model to explore in simulations how individual behavioral rules can lead to358

group-level outcomes. We investigated how behavioral flexibility and inter-individual variability in359

response thresholds can modulate the patterns of task allocation and influence the colony efficiency,360

measured as the number of task switches.361

Task switches, by which we here mean the number of times an individual stops the execution of362

a task at least temporarily, are an important aspect of task execution efficiency. We introduce the363

term task switching here, because under natural conditions, periods of inactivity for one task can364

occur in two forms: (1) as a switch to a different task; or (2) as a temporary interruption, i.e. when365

an individual picks up the same task again after an interruption, as we have described in this study366
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for fanning and inter-fanning intervals. In both cases, there is an impact on task efficiency. In the367

first case it is obvious that individuals frequently switching between tasks have no opportunity to368

specialize in any given task. Focusing on a single task seems even more important for an individual369

on very short timescales than on longer ones, as switching tasks with a high frequency is unlikely to370

be efficient (Charbonneau and Dornhaus 2015; Leighton et al. 2017). To understand the second case,371

we need to take into account that the observed number of periods of inactivity for one task (inter-372

fanning intervals) is not physiologically required: we know from our experiments that individuals373

are able of sustained task execution for much longer periods. During a inter-fanning interval, the374

individual will not reduce the task-related stimulus. As the stimulus remains present other workers375

will, with some probability, fill the role of the temporarily inactive individual and execute the task.376

Thus, extended interruptions in performing a task can cause additional workers to be tied up in the377

same task that would otherwise remain available for different tasks.378

Energetic costs would ultimately be the relevant measure for task efficiency, but they cannot379

be quantified easily. However, it is clear that energetic costs in both cases would be monotonic in380

the number of task switches. We thus use the number of task switches as an abstract proxy to381

handle both possible interpretations simultaneously. Based on this measure, we show show how382

inter-individual variability can be a key factor in combining efficient workforce use with short-term383

collective flexibility.384

A group-level simulation is required to adequately represent the indirect interactions between385

workers via the task-associated stimulus. We integrated a statistically faithful simulation of our386

model with a simple collective cooling process (see supplementary material). Standard Newtonian387

heat conduction processes were used to approximate the effects of ambient temperature and internal388

(brood) heat on the nest. Here we simply assume that all bees have identical fixed cooling capacity389

per time unit.390

We started our exploration with the oversimplified assumption that, in the static environment,391

workers’ task-selecting probabilities do not change over time and their thresholds are identical at the392

ideal level for all individuals. The colony remained closely regulated near the optimal temperature393

(see Fig. 7), but there was a large number of task switches (646 task switches for 100 workers in 500394

time periods). The reason behind this is simple: since every worker will interrupt its task execution395

after some time to re-sample the stimulus, some other workers will immediately step in and perform396

the task if there is demand. Thus the task is rotated between a large number of individuals.397
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We investigated how the following two factors may reduce such frequent task rotation: (1) the398

possibility that individuals switch into a task-specific behavioral context and (2) inter-individual399

variability in thresholds. In our model, switching into a task-specific context corresponds to increas-400

ing the probability pA as soon as Task A is entered and conversely by significantly decreasing pA401

once Task B is started. Thus, in the context of Task A, a worker is less receptive to the stimulus402

of Task B. As one expects, we found that such a context switching reduced the number of workers403

involved (see Fig. 7A) and consequently the number of task switches (by more than an order of404

magnitude to 35).405

Next, we used our model to explore the ramifications of inter-individual variability in thresholds.406

As a starting point we assumed a uniform distribution of thresholds Θ ∼ U(31, 47). For such a407

threshold distribution, there was a further reduction in the numbers of workers and task switches408

(6), while the colony temperature remains effectively regulated with minimal fluctuations (see Fig. 7).409

This is not surprising as a threshold distribution can pre-select a subgroup of individuals that have410

the opportunity to engage.411

We then investigated whether the same mechanism would still work in a variable environment412

where different workers are above their thresholds at different times. On short timescales it is413

reasonable to assume a single rapid change of environmental conditions rather than multiple frequent414

changes. Clearly, the threshold distribution determines in which range the nest temperature can be415

maintained. If n individuals are required to keep the nest temperature below some level T but less416

than n individuals have thresholds below T , the nest temperature will obviously rise to T and above417

(see Fig. 8B).418

To demonstrate the effect of the threshold-distribution shape we repeated the simulation with419

a distribution that is biased towards lower values (thresholds assumed to be beta-distributed and420

rescaled into the interval [31, 47]: Θ ∼ 31 + (47− 31) · β(2, 20)). Such a distribution can thus ensure421

that a sufficient number of workers can rapidly be deployed before a desirable upper temperature422

level (here around 34◦C) is exceeded (see Fig. 8B). Yet, at the same time it ensures that only an423

appropriate number of workers are active when not much work is required for temperature regulation424

(see Fig. 8A). It is conceivable that a threshold distribution is adapted to a typical environment to425

balance efficiency gains with provisions for extraordinary circumstances by a different mechanism426

that acts on a much longer timescale (colony lifetime or evolutionary).427
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DISCUSSION428

Understanding how social insect colonies achieve their highly flexible yet stable organization remains429

a challenge even after decades of focused research. Underlying the coordinated collective patterns430

and behaviors are individual behavioral rules shaped by numerous intrinsic and extrinsic factors.431

To decipher these rules, we need detailed empirical data on individual behavior, from which we can432

build models that allow us to move from description to prediction. We can then explore behaviors433

by simulating these models in hypothetical conditions that have not been investigated empirically434

and that may be difficult to approach in biological experiments.435

We argue that it is necessary to explicitly specify on what timescales theoretical models ap-436

ply, since behavioral rules and the factors modulating these rules will often differ across different437

timescales. In this study we follow a bottom-up approach, starting with a thorough exploration of438

short timescales. On these timescales, temporal response patterns can play an important role in the439

overall function of a colony (Johnson 2009). For example, the interplay between active and inactive440

phases of task performance strongly influences the opportunity for workers in a group to sample441

task-associated stimuli and switch between tasks. It is thus important to explicitly describe and442

model the temporal patterns of behaviors. This is the approach we have pursued in this study. Our443

study provides fine-grained experimental data on individual responses with well-controlled stimulus444

levels, which makes it possible to explicitly analyze the temporal response patterns at comparably445

short timescales.446

In our first series of experiments we analyzed the modulatory effect of the two factors that are447

explicitly part of the assumptions of the response threshold models: (1) stimulus intensity and448

(2) repeated task performance. We found important discrepancies between our experimental data449

and the predictions of these models. We reemphasize that our analysis is only concerned with the450

way that the reinforced threshold models as given in the introduction describe task engagement451

behavior. The discrepancies found do not invalidate the general idea of an internal threshold for a452

task-associated stimulus.453

Our results show that one fundamental prediction of the response threshold models is not con-454

firmed in the response patterns observed at our experimental timescales of up to 20 minutes; namely455

that stimulus intensity and the probability of task engagement are positively correlated (Bonabeau456

et al. 1996; Theraulaz et al. 1998). In our experiments, for those bees that showed fanning behavior,457
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stimulus intensity did not significantly influence the total fanning time, the number of fanning events458

or the rates of task engagement and task disengagement.459

Note that this is not due to a saturation effect in our experiments, even though the temperature460

levels we used seem high. Previous studies have demonstrated that workers measure and respond461

to an increase of brood temperature itself, even when the surrounding air and their own body462

temperature remains low. However, when only brood temperature increases, bees tend to respond at463

higher temperatures; and usually show no fanning response before brood wax temperatures of around464

39◦C, with a substantial proportion of bees not fanning before wax temperatures of at least 42◦C465

have been reached (Westhus et al. 2013; Garrison et al. 2018). Fanning workers in our experiments466

were not investing a maximum of their energy; some individuals regularly paused for up to a few467

minutes between fanning events, whereas others showed several minutes of uninterrupted fanning (as468

can be seen in Fig. 2). The bees were also not in danger of overheating, as in our experimental setup469

only brood-dummy temperature increased, and had ad libitum sugar water supplies available. We470

conclude that workers were not at their physiological limit and could have modulated their response471

even at high temperatures, as shown by our results for the modulatory effect of task performance472

feedback (see below). The fact that there were slightly more non-responders at 42◦C than 47◦C in473

our experiments (see Fig. 2) could indicate that the decision whether or not to engage in a task at474

all and the task response patterns may be independent processes.475

The second prediction of the response threshold models is that repeated task performance leads476

to an increased probability of task engagement. We demonstrated that survival analysis provides477

the analytical methods to quantify and analyze repeated task performance by taking the temporal478

influence into account. Our results revealed a significant albeit small impact of previous task perfor-479

mance on workers’ fanning behavior in both task engagement and disengagement, underlining the480

modulatory effect of experience on task performance. Importantly, in the response threshold models,481

the increase of the observed activity level can only be achieved via a decrease of the threshold with482

repeated task performance when stimulus intensity keeps constant. However, this only influences483

the process of task engagement, whereas our data shows that the process of task disengagement is484

subject to the same dynamics. This aspect is not captured in standard response threshold models.485

Our results lend support to the view that response probability, threshold and duration are dif-486

ferent independent parameters, a point that has been put forward in previous empirical studies487

(Weidenmüller 2004; Mattila and Seeley 2010; Duong and Dornhaus 2012; Westhus et al. 2013).488
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These parameters need to be integrated into a temporal framework, in order to gain a view of the489

detailed response patterns, specifically the rates of task engagement and disengagement. We cap-490

tured this integration in an individual-based model and demonstrated the potential of this model491

by implementing it in simulations for understanding the impact of the observed activity dynamics492

on group-level task allocation.493

In the model simulations we considered group-level outcomes in a homeostatic scenario where494

nest temperature needs to be regulated within a small interval. The number of workers required to495

keep the temperature within this interval depends on external factors such as ambient temperature496

and exposure to sunlight. In a homeostatic scenario and from the perspective of an individual497

worker, the temperature stimulus does not provide the key to this requirement, as it is kept stable.498

Workers can only be recruited to regulation if nest temperature exceeds their thresholds. Thus, a499

sufficient number of workers must have their threshold within the regulation range. If we consider500

the workers whose thresholds are within the regulation range as the “candidate” workforce, we must501

assume that the number of candidate workers is much higher than the number of workers required502

under normal conditions in order to accommodate for short-term demand fluctuations. A central503

question then is whether, on short timescales, any mechanism exists to divide the group of candidate504

workers effectively into “active” and “inactive” subgroups according to short-term requirements.505

The simulation outcomes appear to be insensitive to parameter changes on the scale derived from506

the Cox model, which suggests that repeated task performance does not result in any meaningful507

differentiation of workers’ behavior during the time window under investigation. It would be inter-508

esting to use the framework of timing to explore whether the effect of repeated task performance509

on individual task decision-making would significantly increase on a longer timescale, such as over510

a few days.511

As our simulations and others’ (Myerscough and Oldroyd 2004) bear out, group-level task alloca-512

tion in fluctuating environments can be facilitated by inter-individual variation in response thresh-513

olds. For this variation to be effective, the group-level threshold distribution has to be adapted514

to typical environmental conditions. We make no assumption as to what may shape this distri-515

bution. Possibilities include intrinsic factors, such as genetics and morphology, as well as other516

mechanisms acting on longer timescales than the one empirically addressed in our study (Jeanson517

and Weidenmüller 2014).518

The response threshold model for task allocation in social insects considers only stimulus intensity519
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and repeated task performance as modulatory parameters of individual response behavior. In the520

second series of experiments, we explored the impact of task performance feedback, which is not521

captured in the response threshold models. Task performance feedback may play an important role522

in the specialization of individuals. Our results show that bumblebees are able to perceive and523

respond to the output of their own fanning behavior. Bees that experienced no cooling effect when524

fanning showed a higher rate of task engagement over time and a lower rate of task disengagement,525

when compared to those that were able to reduce brood dummy temperature by fanning. This526

modulatory effect remains hidden in the summary analysis and is revealed only by survival analysis,527

emphasizing the importance of considering the temporal influence in details.528

Why do unsuccessful workers fan more than successful ones in our experiments? It is generally529

expected that workers are more likely to perform the task in which their performance is effective530

(Oster and Wilson 1978; Plowright and Plowright 1988), with support of empirical evidence in531

foraging ants (Tripet and Nonacs 2004; Ravary et al. 2007) and wasps (O’Donnell and Jeanne 1992).532

However, the extent to which collective success in social insects depends on individual specialization533

and task efficiency remains unclear (Gordon 2016). Honeybees with more foraging experience tend534

to bring in larger loads than unexperienced foragers (Dukas and Visscher 1994), and bees that are535

active in the task of undertaking remove corpses faster than less active ones (Trumbo and Robinson536

1997); but in Temnothorax ants individual specialization is not correlated with efficiency (Dornhaus537

2008).538

Our study suggests that timescale may be an important factor when considering the influence of539

task performance feedback. All workers tested in our experiments were presumably näıve to the task540

of fanning; as colonies were kept at 22◦C room temperature and no fanning occurred in the colonies541

before individual bees were tested. The increased effort of workers that did not succeed in cooling the542

brood when fanning may suggest that workers have an internal expectation concerning the output543

of their action and adjust their behavior in an effort to achieve this goal. As a consequence, on544

short timescales, an increase in workers’ effort may occur, while the effect may be inverted on longer545

timescales, ultimately leading to reduced effort or even to completely dropping out of a task when546

no success in task performance is experienced (Ravary et al. 2007). Future studies will investigate547

this possible time-dependent effect of task performance feedback.548

Task type may also lead to different effects of task performance feedback. Workers in a colony549

tend to reduce the stimulus to low levels for a maximizing task such as foraging, while for a home-550
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ostatic task like fanning, it is adequate to maintain the stimulus level within a narrow range. It551

remains to be seen in future studies how our results translate in settings with an additional con-552

trolled task such as foraging. These studies could be used to verify whether the difference between553

the effect of task performance feedback on fanning behavior and on foraging behavior discussed554

above is caused by the type of task and/or the timescale on which it occurs.555

Future studies will also shed light on how individual response dynamics are modulated within556

the social environment. A recent study demonstrates that individual fanning response behavior,557

namely whether a bumblebee responds to an increase in brood temperature or not, and at what558

stimulus levels she starts showing fanning behavior, is modulated in the social context (Garrison559

et al. 2018). Modulation of response to temperature by social environment has also been described560

for thermoregulating honey bees (Cook and Breed 2013). If and how the dynamics of response561

behavior are also modulated by the social environment remains to be investigated. A detailed562

understanding of the individual stimulus-response relationship is a prerequisite for understanding563

how these individual rules are then modified by the social context and how individual behavior is564

integrated into a functioning unit in order to result in appropriate group-level responses.565

In this study, we explored in detail the temporal patterns in the fanning responses of isolated566

individual bumblebees on short timescales. Future research will provide more detail on the pa-567

rameters modulating the timing of individual behavior and integrating individual responses into568

a collective. Building models that explicitly deal with individual response dynamics based on a569

hierarchy of timescales layer by layer from the bottom up provides us the tools to tackle these im-570

portant questions and to deepen our understanding of the complex, decentralized organization of571

insect societies.572
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FIGURE LEGENDS679

Fig. 1
The set-up: the test arena contains one temperature-controlled brood dummy (b) with an internal
thermocouple; brood dummy temperature could be adjusted either via a connected heating plate
(h), which is isolated by an insulation layer (i) from the test arena (Experimental series A) or via
an internal Peltier element (Experimental series B) (setup modified from Westhus et al. 2013).680

Fig. 2
Fanning behavior of bumblebee workers at constant brood dummy temperatures (A: T = 42◦C,
n = 20; B: T = 47◦C, n = 20) over 20 minutes. Workers are sorted in ascending order from top to
bottom by total fanning time. Each row represents a single worker and each column represents an
interval of one second. White space represents inactivity or any activity other than fanning.681

Fig. 3
The total fanning time (A and C) and number of fanning events (B and D) of bumblebee workers
in Experimental series A (A and B) and Experimental series B (C and D). Here each box-and-
whisker plot gives the median, quantiles and fences. The figure shows that on the aggregate level
statistically significant influence can neither be shown for temperature levels nor for open/closed
loop conditions. Note, however, that the fine-grained survival analysis reveals a difference between
open and closed loop conditions that is not visible in this summary analysis (see main text).682

Fig. 4
The time-resolved model of task allocation for a single worker and multiple tasks.683

Fig. 5
The simplified time-resolved model of task allocation for a single worker and for a single observ-
able task. Task A refers to the fanning task observed in experiments. Task B = {B1, ..., Bk−1} is a
set of all other possible behaviors.684

Fig. 6
Distributions of inter-fanning intervals (A) and fanning durations (B) of workers in a log-log
scale. The empirical data is from Experimental series A. The simulation results are based on our
time-resolved model with sA = 42, θA = 32, λA = 0.575, µA ∼ U(0, 1.25), λB ∼ U(0, 1) and
pA ∼ U(0, 1). The rates of fitted exponential distributions are λ = 0.061 for inter-fanning in-
tervals and λ = 0.172 for fanning durations. Both fitted distributions are obtained by the max-
imum likelihood estimation (implemented by EstimatedDistribution in Mathematica, Version
11.2, Wolfram Research Inc.). Here U(a, b) represents a continuous uniform distribution on the
interval [a, b].685
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Fig. 7
Number of fanning events (A) and nest temperatures (B) for a group of bumblebee workers in
the simulated static environment. The simulation results are drawn from 30 replicates and based
on our time-resolved model with n = 100, θA = 32, λA = 0.75, µA = 1, λB ∼ U(0, 1), pA ∼
U(0, 1), α = 0.1, β = 0.05, K = 1 and r = 1/60. In A, workers are sorted from left to right in
descending order based on their number of fanning events. Here U(a, b) represents a continuous
uniform distribution on the interval [a, b].686

Fig. 8
Number of fanning events (A) and nest temperatures (B) for a group of bumblebee workers in the
simulated dynamic environment. The simulation results are drawn from 30 replicates and based
on our time-resolved model with n = 100, λA = 0.75, µA = 1, λB ∼ U(0, 1), pA ∼ U(0, 1), α = 0.1,
β = 0.05, K = 1 and r = 1/60. sA = 28 before the time passed 100 and sA = 32 after the
time 100. In A, workers are sorted from left to right in descending order based on their number
of fanning events. In B, the probability density function of beta-distributed thresholds is given on
the left. Here U(a, b) represents a continuous uniform distribution on the interval [a, b].687
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FIGURES688

thermocouple
Fig. 1
The set-up: the test arena contains one temperature-controlled brood dummy (b) with an internal
thermocouple; brood dummy temperature could be adjusted either via a connected heating plate
(h), which is isolated by an insulation layer (i) from the test arena (Experimental series A) or via
an internal Peltier element (Experimental series B) (setup modified from Westhus et al. 2013).
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Fanning behavior of bumblebee workers at constant brood dummy temperatures (A: T = 42◦C,
n = 20; B: T = 47◦C, n = 20) over 20 minutes. Workers are sorted in ascending order from top to
bottom by total fanning time. Each row represents a single worker and each column represents an
interval of one second. White space represents inactivity or any activity other than fanning.
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The total fanning time (A and C) and number of fanning events (B and D) of bumblebee workers
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whisker plot gives the median, quantiles and fences. The figure shows that on the aggregate level
statistically significant influence can neither be shown for temperature levels nor for open/closed
loop conditions. Note, however, that the fine-grained survival analysis reveals a difference between
open and closed loop conditions that is not visible in this summary analysis (see main text).
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Fig. 4
The time-resolved model of task allocation for a single worker and multiple tasks.
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Fig. 5
The simplified time-resolved model of task allocation for a single worker and for a single observ-
able task. Task A refers to the fanning task observed in experiments. Task B = {B1, ..., Bk−1} is a
set of all other possible behaviors.
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Fig. 6
Distributions of inter-fanning intervals (A) and fanning durations (B) of workers in a log-log
scale. The empirical data is from Experimental series A. The simulation results are based on our
time-resolved model with sA = 42, θA = 32, λA = 0.575, µA ∼ U(0, 1.25), λB ∼ U(0, 1) and
pA ∼ U(0, 1). The rates of fitted exponential distributions are λ = 0.061 for inter-fanning in-
tervals and λ = 0.172 for fanning durations. Both fitted distributions are obtained by the max-
imum likelihood estimation (implemented by EstimatedDistribution in Mathematica, Version
11.2, Wolfram Research Inc.). Here U(a, b) represents a continuous uniform distribution on the
interval [a, b].
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Fig. 7
Number of fanning events (A) and nest temperatures (B) for a group of bumblebee workers in
the simulated static environment. The simulation results are drawn from 30 replicates and based
on our time-resolved model with n = 100, θA = 32, λA = 0.75, µA = 1, λB ∼ U(0, 1), pA ∼
U(0, 1), α = 0.1, β = 0.05, K = 1 and r = 1/60. In A, workers are sorted from left to right in
descending order based on their number of fanning events. Here U(a, b) represents a continuous
uniform distribution on the interval [a, b].
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Fig. 8
Number of fanning events (A) and nest temperatures (B) for a group of bumblebee workers in the
simulated dynamic environment. The simulation results are drawn from 30 replicates and based
on our time-resolved model with n = 100, λA = 0.75, µA = 1, λB ∼ U(0, 1), pA ∼ U(0, 1), α = 0.1,
β = 0.05, K = 1 and r = 1/60. sA = 28 before the time passed 100 and sA = 32 after the
time 100. In A, workers are sorted from left to right in descending order based on their number
of fanning events. In B, the probability density function of beta-distributed thresholds is given on
the left. Here U(a, b) represents a continuous uniform distribution on the interval [a, b].
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